Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Yonsei Med J ; 65(2): 70-77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288647

RESUMO

PURPOSE: Numerous studies have supported the role of the immune dysfunction in the pathogenesis of autism spectrum disorder (ASD); however, to our knowledge, no study has been conducted on plasma cytokine levels in children with ASD in South Korea. In this study, we aimed to analyze the immunological characteristics of Korean children with ASD through plasma cytokine analysis. MATERIALS AND METHODS: Blood samples were collected from 94 ASD children (mean age 7.1; 81 males and 13 females) and 48 typically developing children (TDC) (mean age 7.3; 30 males and 18 females). Plasma was isolated from 1 mL of blood by clarifying with centrifugation at 8000 rpm at 4℃ for 10 min. Cytokines in plasma were measured with LEGENDplex HU Th cytokine panel (BioLegend, 741028) and LEGENDplex HU cytokine panel 2 (BioLegend, 740102). RESULTS: Among 25 cytokines, innate immune cytokine [interleukin (IL)-33] was significantly decreased in ASD children compared with TDC. In acute phase proteins, tumor necrosis factor α (TNF-α) was significantly increased, while IL-6, another inflammation marker, was decreased in ASD children compared with TDC. The cytokines from T cell subsets, including interferon (IFN)-γ, IL-5, IL-13, and IL-17f, were significantly decreased in ASD children compared to TDC. IL-10, a major anti-inflammatory cytokine, and IL-9, which modulates immune cell growth and proliferation, were also significantly decreased in ASD children compared to TDC. CONCLUSION: We confirmed that Korean children with ASD showed altered immune function and unique cytokine expression patterns distinct from TDC.


Assuntos
Transtorno do Espectro Autista , Citocinas , Criança , Masculino , Feminino , Humanos , Fator de Necrose Tumoral alfa , Inflamação , Interferons
2.
EBioMedicine ; 99: 104932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118400

RESUMO

BACKGROUND: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS: In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS: Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFß signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION: Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFß signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).


Assuntos
COVID-19 , Melfalan , gama-Globulinas , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Furões , Brônquios , Fator de Crescimento Transformador beta , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
3.
Immune Netw ; 23(4): e31, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37670809

RESUMO

Evidence suggests that the human respiratory tract, as with the gastrointestinal tract, has evolved to its current state in association with commensal microbes. However, little is known about how the airway microbiome affects the development of airway immune system. Here, we uncover a previously unidentified mode of interaction between host airway immunity and a unique strain (AIT01) of Staphylococcus epidermidis, a predominant species of the nasal microbiome. Intranasal administration of AIT01 increased the population of neutrophils and monocytes in mouse lungs. The recruitment of these immune cells resulted in the protection of the murine host against infection by Pseudomonas aeruginosa, a pathogenic bacterium. Interestingly, an AIT01-secreted protein identified as GAPDH, a well-known bacterial moonlighting protein, mediated this protective effect. Intranasal delivery of the purified GAPDH conferred significant resistance against other Gram-negative pathogens (Klebsiella pneumoniae and Acinetobacter baumannii) and influenza A virus. Our findings demonstrate the potential of a native nasal microbe and its secretory protein to enhance innate immune defense against airway infections. These results offer a promising preventive measure, particularly relevant in the context of global pandemics.

4.
Nutrients ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37571230

RESUMO

Chlorella vulgaris (C. vulgaris) is unicellular green algae consumed worldwide as a functional food. The immune stimulatory function of C. vulgaris is known; however, no study has elucidated its immune regulatory potential and associated microbiome modulation. In the current study, we aimed to validate the immune regulatory role of C. vulgaris mediated through two mechanisms. Initially, we assessed its ability to promote the expansion of the regulatory T cell (Treg) population. Subsequently, we investigated its impact on gut microbiota composition and associated metabolites. The supplementation of C. vulgaris altered the gut microbiota composition, accompanied by increased short-chain fatty acid (SCFAs) production in mice at homeostasis. We later used C. vulgaris in the treatment of a DSS-induced colitis model. C. vulgaris intervention alleviated the pathological symptom of colitis in mice, with a corresponding increase in Treg levels. As C. vulgaris is a safe and widely used food supplement, it can be a feasible strategy to instigate cross-talk between the host immune system and the intestinal flora for the effective management of inflammatory bowel disease (IBD).


Assuntos
Chlorella vulgaris , Colite , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Linfócitos T Reguladores , Colite/induzido quimicamente , Colite/terapia , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
5.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541953

RESUMO

Probiotics, live microorganisms that confer health benefits when consumed in adequate amounts, have gained significant attention for their potential therapeutic applications. The beneficial effects of probiotics are believed to stem from their ability to enhance intestinal barrier function, inhibit pathogens, increase beneficial gut microbes, and modulate immune responses. However, clinical studies investigating the effectiveness of probiotics have yielded conflicting results, potentially due to the wide variety of probiotic species and strains used, the challenges in controlling the desired number of live microorganisms, and the complex interactions between bioactive substances within probiotics. Bacterial cell wall components, known as effector molecules, play a crucial role in mediating the interaction between probiotics and host receptors, leading to the activation of signaling pathways that contribute to the health-promoting effects. Previous reviews have extensively covered different probiotic effector molecules, highlighting their impact on immune homeostasis. Understanding how each probiotic component modulates immune activity at the molecular level may enable the prediction of immunological outcomes in future clinical studies. In this review, we present a comprehensive overview of the structural and immunological features of probiotic effector molecules, focusing primarily on Lactobacillus and Bifidobacterium. We also discuss current gaps and limitations in the field and propose directions for future research to enhance our understanding of probiotic-mediated immunomodulation.


Assuntos
Probióticos , Probióticos/uso terapêutico , Lactobacillus , Bactérias , Transdução de Sinais , Bifidobacterium/metabolismo
6.
Am J Pathol ; 193(7): 866-882, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024046

RESUMO

The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.


Assuntos
COVID-19 , Camundongos , Humanos , Animais , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/metabolismo , Camundongos Transgênicos , Suscetibilidade a Doenças , Células Apresentadoras de Antígenos , Modelos Animais de Doenças , Pulmão/metabolismo
7.
Immune Netw ; 23(1): e6, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36911800

RESUMO

Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.

8.
Exp Mol Med ; 54(11): 1913-1926, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357569

RESUMO

Immune checkpoint therapies, such as programmed cell death ligand 1 (PD-L1) blockade, have shown remarkable clinical benefit in many cancers by restoring the function of exhausted T cells. Hence, the identification of novel PD-L1 regulators and the development of their inhibition strategies have significant therapeutic advantages. Here, we conducted pooled shRNA screening to identify regulators of membrane PD-L1 levels in lung cancer cells targeting druggable genes and cancer drivers. We identified WNK lysine deficient protein kinase 3 (WNK3) as a novel positive regulator of PD-L1 expression. The kinase-dead WNK3 mutant failed to elevate PD-L1 levels, indicating the involvement of its kinase domain in this function. WNK3 perturbation increased cancer cell death in cancer cell-immune cell coculture conditions and boosted the secretion of cytokines and cytolytic enzymes, promoting antitumor activities in CD4+ and CD8+ T cells. WNK463, a pan-WNK inhibitor, enhanced CD8+ T-cell-mediated antitumor activity and suppressed tumor growth as a monotherapy as well as in combination with a low-dose anti-PD-1 antibody in the MC38 syngeneic mouse model. Furthermore, we demonstrated that the c-JUN N-terminal kinase (JNK)/c-JUN pathway underlies WNK3-mediated transcriptional regulation of PD-L1. Our findings highlight that WNK3 inhibition might serve as a potential therapeutic strategy for cancer immunotherapy through its concurrent impact on cancer cells and immune cells.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Imunoterapia , Neoplasias Pulmonares/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
9.
Biomaterials ; 289: 121762, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058029

RESUMO

Cancer immunotherapy is a next-generation treatment strategy; however, its side effects limit its clinical translation. Here, a novel combination of a multi-functional nano-adjuvant (M-NA) prepared with an iron oxide/gold core and a cationic polymer shell via multilayer synthesis with CpG oligodeoxynucleotide (CpG-ODN) electrostatically complexed on its surface, and irreversible electroporation (IRE) technique was developed for effective image-guided in situ cancer vaccination. The M-NA can be retained long-term in the dense tumoral extracellular matrix after intratumoral injection and internalized by antigen-presenting cells (APCs). The IRE can induce immunogenic cell death. Indeed, in a mouse tumor model, the M-NA showed longer tumor retention time than free CpG-ODN. Compared with other treatments, the combined treatment significantly inhibited tumor growth with 100% survival rate for ∼60 days. The therapy induced the activation of cytotoxic lymphocytes and the maturation of APCs in vivo. This treatment could be effective in image-guided local cancer immunotherapy.


Assuntos
Neoplasias , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos , Animais , Eletroporação/métodos , Ouro , Camundongos , Neoplasias/terapia , Polímeros , Vacinação
10.
Front Immunol ; 13: 916066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844606

RESUMO

The human gastrointestinal tract has an enormous and diverse microbial community, termed microbiota, that is necessary for the development of the immune system and tissue homeostasis. In contrast, microbial dysbiosis is associated with various inflammatory and autoimmune diseases as well as neurological disorders in humans by affecting not only the immune system in the gastrointestinal tract but also other distal organs. FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ helper T cell lineages that function as a gatekeeper for immune activation and are essential for peripheral autoimmunity prevention. Tregs are crucial to the maintenance of immunological homeostasis and tolerance at barrier regions. Tregs reside in both lymphoid and non-lymphoid tissues, and tissue-resident Tregs have unique tissue-specific phenotype and distinct function. The gut microbiota has an impact on Tregs development, accumulation, and function in periphery. Tregs, in turn, modulate antigen-specific responses aimed towards gut microbes, which supports the host-microbiota symbiotic interaction in the gut. Recent studies have indicated that Tregs interact with a variety of resident cells in central nervous system (CNS) to limit the progression of neurological illnesses such as ischemic stroke, Alzheimer's disease, and Parkinson's disease. The gastrointestinal tract and CNS are functionally connected, and current findings provide insights that Tregs function along the gut-brain axis by interacting with immune, epithelial, and neuronal cells. The purpose of this study is to explain our current knowledge of the biological role of tissue-resident Tregs, as well as the interaction along the gut-brain axis.


Assuntos
Microbioma Gastrointestinal , Linfócitos T Reguladores , Encéfalo , Eixo Encéfalo-Intestino , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos
11.
Trends Immunol ; 43(3): 230-244, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131181

RESUMO

Exposure to heightened inflammation in pregnancy caused by infections or other inflammatory insults has been associated with the onset of neurodevelopmental and psychiatric disorders in children. Rodent models have provided unique insights into how this maternal immune activation (MIA) disrupts brain development. Here, we discuss the key immune factors involved, highlight recent advances in determining the molecular and cellular pathways of MIA, and review how the maternal immune system affects fetal development. We also examine the roles of microbiomes in shaping maternal immune function and the development of autism-like phenotypes. A comprehensive understanding of the gut bacteria-immune-neuro interaction in MIA is essential for developing diagnostic and therapeutic measures for high-risk pregnant women and identifying targets for treating inflammation-induced neurodevelopmental disorders.


Assuntos
Microbiota , Efeitos Tardios da Exposição Pré-Natal , Animais , Modelos Animais de Doenças , Feminino , Humanos , Sistema Imunitário , Inflamação/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/imunologia
12.
Immunity ; 55(1): 145-158.e7, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34879222

RESUMO

Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Interleucina-17/metabolismo , Intestinos/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno do Espectro Autista/microbiologia , Criança , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Humanos , Imunização , Inflamação/microbiologia , Camundongos , Transtornos do Neurodesenvolvimento/microbiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia
14.
Nano Converg ; 8(1): 24, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398322

RESUMO

Antibodies have been widely used to provide targeting ability and to enhance bioactivity owing to their high specificity, availability, and diversity. Recent advances in biotechnology and nanotechnology permit site-specific engineering of antibodies and their conjugation to the surfaces of nanoparticles (NPs) in various orientations through chemical conjugations and physical adhesions. This study proposes the conjugation of poly(lactic-co-glycolic acid) (PLGA) NPs with antibodies by using two distinct methods, followed by a comparison between the cell-targeting efficiencies of both techniques. Full-length antibodies were conjugated to the PLGA-poly(ethylene glycol)-carboxylic acid (PLGA-PEG-COOH) NPs through the conventional carbodiimide coupling reaction, and f(ab')2 antibody fragments were conjugated to the PLGA-poly(ethylene glycol)-maleimide(PLGA-PEG-Mal) NPs through interactions between the f(ab')2 fragment thiol groups and the maleimide located on the nanoparticle surface. The results demonstrate that the PLGA nanoparticles conjugated with the f(ab')2 antibody fragments had a higher targeting efficiency in vitro and in vivo than that of the PLGA nanoparticles conjugated with the full-length antibodies. The results of this study can be built upon to design a delivery technique for drugs through biocompatible nanoparticles.

15.
Mamm Genome ; 32(4): 311-318, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34241667

RESUMO

Laboratory mice have long been an invaluable tool in biomedical science and have made significant contributions in research into life-threatening diseases. However, the translation of research results from mice to humans often proves difficult due to the incomplete nature of laboratory animal-based research. Hence, there is increasing demand for complementary methods or alternatives to laboratory mice that can better mimic human physiological traits and potentially bridge the translational research gap. Under these circumstances, the natural/naturalized mice including "wild", "dirty", "wildling", and "wilded" systems have been found to better reflect some aspects of human pathophysiology. Here, we discuss the pros and cons of the laboratory mouse system and contemplate how wild mice and wild microbiota are able to help in refining such systems to better mimic the real-world situation and contribute to more productive translational research.


Assuntos
Animais Selvagens/microbiologia , Microbioma Gastrointestinal/genética , Pesquisa Translacional Biomédica/tendências , Animais , Animais Selvagens/genética , Humanos , Camundongos , Modelos Animais
17.
Adv Sci (Weinh) ; 7(23): 2001940, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33173718

RESUMO

The current outbreak of the beta-coronavirus (beta-Cov) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in December 2019. No specific antiviral treatments or vaccines are currently available. A recent study has reported that coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is associated with neutrophil-specific plasma membrane rupture, and release excessive neutrophil extracellular traps (NETs) and extracellular DNAs (eDNAs). This mechanism involves the activation of NETosis, a neutrophil-specific programmed cell death, which is believed to play a crucial role in COVID-19 pathogenesis. Further progression of the disease can cause uncontrolled inflammation, leading to the initiation of cytokine storms, acute respiratory distress syndrome (ARDS), and sepsis. Herein, it is reported that DNase-I-coated melanin-like nanospheres (DNase-I pMNSs) mitigate sepsis-associated NETosis dysregulation, thereby preventing further progression of the disease. Recombinant DNase-I and poly(ethylene glycol) (PEG) are used as coatings to promote the lengthy circulation and dissolution of NET structure. The data indicate that the application of bioinspired DNase-I pMNSs reduce neutrophil counts and NETosis-related factors in the plasma of SARS-CoV-2 sepsis patients, alleviates systemic inflammation, and attenuates mortality in a septic mouse model. Altogether, the findings suggest that these nanoparticles have potential applications in the treatment of SARS-CoV-2-related illnesses and other beta-CoV-related diseases.

18.
Front Oncol ; 10: 642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477936

RESUMO

ETS1 has shown dichotomous roles as an oncogene and a tumor suppressor gene in diverse cancers, but its functionality in breast cancer tumorigenesis still remains unclear. We utilized the Cancer Genome Atlas (TCGA) database to analyze comprehensive functions of ETS1 in human breast cancer (BRCA) patients by investigating its expression patterns and methylation status in relation to clinical prognosis. ETS1 expression was significantly diminished by hyper-methylation of the ETS1 promoter region in specimens from BRCA patients compared to a healthy control group. Moreover, ETS1 high BRCA patients showed better prognosis and longer survival compared to ETS1 low BRCA patients. Consistent with clinical evidence, comparative transcriptome analysis combined with CRISPR/Cas9 or shRNA based perturbation of ETS1 expression revealed direct as well as indirect mechanisms of ETS1 that hinder tumorigenesis of BRCA cells. Taken together, our study enlightens a novel function of ETS1 as a tumor suppressor in breast cancer cells.

19.
Front Immunol ; 10: 2487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749798

RESUMO

Regulatory T cells (Tregs) play a major role in immune homeostasis and in the prevention of autoimmune diseases. It has been shown that c-Rel is critical in Treg thymic differentiation, but little is known on the role of NF-κB on mature Treg biology. We thus generated mice with a specific knockout of RelA, a key member of NF-κB, in Tregs. These mice developed a severe autoimmune syndrome with multi-organ immune infiltration and high activation of lymphoid and myeloid cells. Phenotypic and transcriptomic analyses showed that RelA is critical in the acquisition of the effector Treg state independently of surrounding inflammatory environment. Unexpectedly, RelA-deficient Tregs also displayed reduced stability and cells that had lost Foxp3 produced inflammatory cytokines. Overall, we show that RelA is critical for Treg biology as it promotes both the generation of their effector phenotype and the maintenance of their identity.


Assuntos
Imunomodulação , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Imunomodulação/genética , Imunofenotipagem , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fator de Transcrição RelA/química
20.
BMC Cancer ; 19(1): 1113, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727003

RESUMO

Following publication of the original article [1], the authors have re-evaluated the authorship for this article. The updated author group is.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...